给定空间不共面的四个有序数据点,可以形成一个四面体。在四面体内,Bernstein-Bézier(B-B)形式定义两类正则实多项式代数曲面片,一类是二次的,一类是三次的。此两类曲面片在四面体内的交集为一条正则曲线段。先固定二次曲面片,并得到其参数形式,然后约简三次曲面片所对应的Bernstein系数,使之为带有三个形状调整的形状因子,其中两个分别代表曲线段端点处的曲率,另外一个作为形状的调整。利用二次曲面的参数形式,由三次曲面片可得到曲线的隐参数约束形式,从而得到曲线的参数形式。对给定的空间点列,利用两个形状因子较容易的拼接出G2-连续的逼近曲线,突破了现行代数曲线生成方法,即空间连续曲线均是