从网络文本自动分类的需求出发,针对基于VSM模型的分类处理中词条无关假设和词条维度过高等问题,对基于类中心向量的分类方法进行了改进。利用LSA分析中的SVD分解获得Web文档的语义特征向量,并在此基础上进行分类处理,在不损害分类精度的同时提高了分类及其后处理速度,并设计实现了一个原型系统。