论文研究 基于类间极大化的PCM聚类技术的图像分割方法.pdf

qq_31102354 20 0 .PDF 2020-07-17 14:07:52

在图像分割的多种方法中,模糊C均值(FCM)聚类是最简单有效的。可能性C-均值算法(PCM)作为FCM的同类算法具有更佳的聚类性能和概率解释性,但无论是FCM还是PCM均受隶属度的约束影响使其对噪声点和野值点较为敏感。针对以上问题,提出了一种新的称之为类间极大化的PCM算法(MPCM)聚类算法。该算法考虑了对类间的惩罚,通过调控参数[λ],拉大类中心之间的距离,实现图像中像素点的最佳分类。给出了人工合成纹理图像、真实图像以及带有椒盐噪声的真实图像的实验,结果表明算法在图像分割效果上优于传统的聚类分析算法。

论文研究 基于类间极大化的PCM聚类技术的图像分割方法.pdf

用户评论
请输入评论内容
评分:
暂无评论