目前目标跟踪算法采用的交互多模型,大多是通过固定模型之间的切换来完成目标跟踪,这容易出现模型集与目标真实运动不匹配问题,降低目标跟踪的精度。同时,现在大部分观测平台都能提供多传感器量测,这要求跟踪算法能对不同量测信息进行高效数据融合。针对上述问题,提出一种基于自适应变结构多模型和信息滤波的跟踪算法,它由少量模型构成模型集,通过在线更新模型集参数以自适应目标真实运动,采用无迹卡尔曼信息滤波融合多传感器量测信息,实现对目标的跟踪。仿真结果表明,该算法可以有效融合多传感器量测信息,自适应匹配目标真实运动,实现对目标稳定的高精度跟踪。