针对扩展卡尔曼粒子滤波算法滤波精度较低和粒子退化的问题,将马尔可夫链蒙特卡罗(MCMC)方法与扩展卡尔曼粒子滤波相结合,应用于目标跟踪。该算法利用扩展卡尔曼滤波来构造粒子滤波的建议分布函数,使建议分布函数能够融入最新的观测信息,以便得到更符合真实状态的后验概率分布;同时引入MCMC方法对所选的建议分布进行优化处理,使抽样粒子更加多样性。仿真结果表明,该算法能有效地解决粒子贫化问题并提高滤波精度。