暂无评论
地磁感应电流(GIC)流经变压器绕组会产生直流偏磁现象,造成变压器无功损耗增加,破坏电网无功平衡,影响电网安全稳定运行。为了有效地抑制GIC对电网的不良影响,以无功补偿设备成本和电压偏移量最小为目标,
分析了粒子群算法的惯性部分、个体认知部分和群体认知部分的作用,对粒子群算法迭代方程的各部分进行变形,获得了三种新形式的粒子群算法。用算例说明所得到的三个新的粒子群算法具有较好的优化能力。
多目标优化问题中,决策者往往只对目标空间的某一区域感兴趣,因此需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法却找出全部的Pareto前沿,决策效率不高。针对该问题,给出了基于决策者
针对多目标粒子群算法存在的问题,提出了一种可行性规则动态调整的多目标粒子群算法。在算法中,根据粒子之间的相似度值动态非线性地更新算法的惯性权重,使得算法可以高效地平衡全局和局部搜索之间的矛盾;采用动态
为了使多目标粒子群算法中种群粒子能够快速地收敛于帕累托最优边界,针对标准多目标粒子群算法中缺乏粒子评价标准以及种群个体历史最优值位置和全局最优值位置选择问题,提出了一种基于环境选择和配对选择策略的多目
针对粒子种群较差的局部搜索能力,提出了一种自适应种群更新策略的多目标粒子群算法。该算法在每次种群进行迭代时,根据种群的多样性测度以及每个粒子的适应度值,自适应地改变速度权重,以此来提高种群粒子在局部搜
为了克服粒子群算法求解多目标问题极易收敛到伪Pareto前沿(等价于单目标优化问题中的局部最优解)和收敛速度较慢的缺陷,提出一种合并帕累托占优概念到动态邻居和变异因子的粒子群算法(particlesw
提出一种新的基于Pareto多目标进化免疫算法(PMEIA)。算法在每一代进化群体中选取最优非支配抗体保存到记忆细胞文档中;同时引入Parzen 窗估计法计算记忆细胞的熵值,根据熵值对记忆细胞文档进行
针对粒子群优化算法稳定性较差和易陷入局部极值的缺点,提出了一种新颖的混沌粒子群优化算法。一方面,在可行域中应用逻辑自映射函数初始化生成均匀分布的粒群,提高了初始解的质量和增加了算法的稳定性;另一方面,
智能优化算法中的多目标粒子群算法(MOPSO)被广泛用于函数寻优,特别是在处理多目标问题时。MOPSO通过搜索配帕累托前沿和帕累托最优解集,解决了多个目标函数之间的相互矛盾。该算法在解决多目标问题方面
暂无评论