暂无评论
为有效改进基本PSO算法的搜索能力,提出了一种基于遗传交叉和多混沌方式改进的粒子群算法。该算法为获得比当前群体更优的最优解,采用了以下四种措施:其一,对当前群体中的最优解和每个粒子最优解进行遗传交叉操
分析了粒子群算法的惯性部分、个体认知部分和群体认知部分的作用,对粒子群算法迭代方程的各部分进行变形,获得了三种新形式的粒子群算法。用算例说明所得到的三个新的粒子群算法具有较好的优化能力。
针对文化粒子群算法中影响函数对群体空间的全局变异操作,易导致粒子群算法结构失效及不易收敛的缺点,将群体适应度方差引入到群体空间,提出一种自适应指导的文化粒子群算法。算法通过计算群体适应度方差判断群体空
针对约束多目标优化问题,结合Pareto支配思想、锦标赛选择和排挤距离技术,采用双种群搜索策略,引进免疫机制,对传统的粒子更新策略进行改进,提出一种用于求解约束多目标优化问题的混合粒子群算法。通过4个
针对多目标粒子群算法进行了收敛性和分布性分析,提出了一种应用概率分配的自适应调整惯性因子的粒子群优化算法。该算法通过粒子非劣排序的支配等级,设定个体的适应度数值,为增强最优解集的分散性,采用拥挤距离对
针对量子粒子群优化算法存在早熟收敛的问题,提出一种基于Logistics混沌映射变异的多种群量子粒子群优化算法(CMQPSO),采用分段Logistics混沌映射生成初始粒子群,根据适应度值将群体分为
利用有序二叉决策图OBDD对二值图像序列数据进行建模,根据图像序列的帧间相关性,图像序列的OBDD共享了大量结点,节省一定的存储空间,为图像序列的有关处理提供了一个新的数据表示方法。
针对资源受限项目调度问题中的干扰情况进行了界定, 面向几种干扰问题建立了相应的资源受限项目调度干扰模型和混沌粒子群求解算法, 对项目网络图干扰、任务干扰和资源干扰三种干扰问题进行仿真计算, 验证了算法
针对矿井通风网络分支风量优化问题,以矿井通风网络的总功率最小为目标,结合矿井模型中风量平衡方程、风压平衡方程、分支阻力方程以及风机特性曲线方程等约束条件,提出一种多种群自适应粒子群优化算法(MA-PS
传统粒子群优化算法(PSO)对社会认知部分与自我认知部分都采用恒定学习常数,一定程度上限制了种群全局协调能力。在算法收敛后期种群多样性丧失而导致全部个体收敛于搜索空间中的某一点,这易诱发早熟现象。针对
暂无评论