针对多目标粒子群算法进行了收敛性和分布性分析,提出了一种应用概率分配的自适应调整惯性因子的粒子群优化算法。该算法通过粒子非劣排序的支配等级,设定个体的适应度数值,为增强最优解集的分散性,采用拥挤距离对适应度进行惩罚,进而根据概率选择比较获取相应的最优个体;同时算法根据粒子个体所处位置以及相应的迭代次数,对惯性因子进行了自适应调整,增强了算法的收敛性。最后通过测试函数对改进算法进行了效果验证,表明了算法的有效性。