为了解决规模复杂的旅行商问题,提出了融合蚁群算法和粒子群算法的一种群体智能混合算法,并构建了惯性权值模糊自适应调整模型。针对此混合算法易陷入局部最优,设计了参数自动调节机制,以达到局部搜索和全局搜索之间的平衡。在搜索的初期时,参数[ω]会自适应调整为较大值,则算法应具有很强的全局搜索能力;当进入搜索的后期时,参数[ω]会自适应调整为较小值,则算法应具有较强的局部搜索能力。通过大量仿真实验表明,改进的混合算法搜索能力优于同类算法和传统算法,而且该模型应用在大规模TSP中,获得了满意的效果。