基于角结构统计量的MKECA间歇过程故障监测.pdf
基于角结构统计量的MKECA间歇过程故障监测.pdf,针对间歇过程复杂非线性的特点,提出一种基于角结构统计量的多向核熵成分分析(MKECA)间歇过程监测方法。该方法首先将间歇过程数据进行标准化预处理,然后采用KECA提取间歇过程数据的主成分矩阵。研究表明,经过KECA投影后的主成分数据具有良好的角结构,因此利用主成分矩阵构造基于角结构的统计量,并且采用核密度估计算法计算其控制限。与传统的统计量相比,无需假设过程变量服从高斯分布。最后通过青霉素发酵的仿真平台和大肠杆菌实际生产过程验证,实验结果表明,相比于传统MKPCA方法,能够有效利用主成分的结构信息,明显降低了故障的误报率、漏报率。
暂无评论