虽然孪生支持向量机(Twin Support Vector Machine,TSVM)的处理速度优于传统的支持向量机,但其并没有考虑输入样本点对最优分类超平面所产生的不同影响。通过为每个训练样本赋予不同的样本重要性,以及减少样本点对非平行超平面的影响,提出了模糊加权孪生支持向量机(Fuzzy TSVM,FTSVM)。在UCI标准数据集上,对FTSVM进行了实验研究并与TSVM、FSVM和SVM方法进行了比较,实验结果表明FTSVM方法是有效的。