【作者】 唐发明; 【导师】 陈绵云; 王仲东; 【作者基本信息】 华中科技大学 , 控制理论与控制工程, 2005, 博士 【摘要】 传统的统计学研究的是假定样本数目趋于无穷大时的渐近理论,现有的机器学习方法大多是基于这个假设。然而在实际的问题中,样本数往往是有限的。现有的基于传统统计学的学习方法在有限样本的情况下难以取得理想的效果。统计学习理论是在有限样本情况下新建立起来的统计学理论体系,为人们系统地研究小样本情况下机器学习问题提供了有力的理论基础。支持向量机是在统计学习理论基础上开发出来的一种新的、非常有效的机器学习新方法。它较好地解决了以往困扰很多学习方法的小样本、非线性、过学习