支持向量机所具有的处理小样本和良好的推广能力的优势,在入侵检测中得到了广泛应用。考虑到数据特征的高维性和冗余性,特征提取是一个关键步骤。采用非线性流形学习算法L-Isomap对入侵检测数据进行特征选择,然后应用one-class SVM训练并识别异常。通过将异构值差度量(HVDM)距离代替欧几里德距离提出了HL-Isomap。选用KDD数据集来比较上述不同模型,实验结果表明了降维方法的有效性,尤其是误警率性能得到了显著的提高。