针对目前机械故障诊断中难以进行特征提取和常规SVM算法诊断多类分类问题时存在困难等问题,提出了结合了WPA理论和基于二叉树的多级SVM分类器的WPA-SVM多分类故障混合诊断模型。采用小波包分析对机械信号提取频域能量特征向量,通过训练多个依赖故障优先级的基于二叉树的多级SVM分类器中,找到样本中的支持向量,并以此决定超平面。然后根据最优分类平面,对测试集的样本进行故障诊断。通过对两种不同特征提取方法、三种不同SVM识别策略的实验比较结果可知,该方法是有效的。