连续特征量化方法是数据挖掘方法中必要的预处理过程。呈现一种组合与概率的连续特征权衡量化方法。基于最小描述长度以及组合与概率理论,提出连续特征量化的权衡标准,能够在量化所导致的分类错误与量化区间信息之间得到合理的权衡;基于该权衡标准提出一种有效的动态规划量化算法,以找到最好的量化结果;量化后的数据采用naive贝叶斯分类器进行分类预测,与其他连续特征量化方法的对比实验结果表明,新方法得到了较高的平均学习精度。