由于使用了比例因子,我们从使用inflaton值开始。 我们还使用普朗克前期时空中度量张量的时间分量的变化。 为此,我们最终使用了黄超流体宇宙模型,该模型是通过改进的超流体宇宙学模型进行的,该模型导致在普朗克前政权范围内检查曲率,小但非零且能量密度较高的情况。 势能由以下条件给定,即导致的关系,我们将在初始时间隔离条件,并将其与作者在另一篇论文中提供的寻根程序进行比较。 然后,然后假设修改的哈勃参数,在因果表面之后,由决定的量子反弹之后,具有初始哈勃参数。 并且是大约110的初始自由度值。然后,引力子生产率是导致温度T依赖性的时间的函数,其中M是选定的质量标度,M约为30 TeV,d大于或等于