LBF模型是一个著名的基于区域的活动轮廓模型。与PC(Piecewise Constant)模型不同,该模型引入了一个以高斯函数为核函数的局部二值拟合(Local Binary Fitting,LBF)能量。因为LBF能量能够获取图像的局部信息,所以LBF模型解决了PC模型不能处理灰度不均一图像的分割问题。提出了一个改进的LBF模型,它使用一个新的核函数代替高斯核函数。实验表明:与LBF模型比较,新模型减少分割时间约50%。