针对非线性自回归模型(Nonlinear Auto-Regressive with extrainput,NARX)系统辨识问题,利用非正交的方法来构造较为稀疏的逼近NARX模型的径向基函数模型。与已有的径向基或其他的核模型只采用同一固定的尺度不同,采用多个尺度,通过最小化当前训练误差,选择最佳的核中心和尺度参数。在学习过程中,采用非正交核函数的方法进行模型逐步回归。对样本数据利用k均值聚类算法得到核函数中心参数备选项,同时设置多个备选尺度,并通过最小二乘法求得相应核函数的权值,利用前向选择方法从中找出使模型误差最小的最优核函数。仿真实验验证了方法在泛化性能和稀疏性方面的可行性。