针对K-prototypes聚类算法处理混合型入侵检测数据时易陷入局部最优且对初始值敏感的问题,提出了一种基于K-prototypes与模糊评判相结合的入侵检测方法,利用K-prototypes对数据进行统计归类,在聚类中建立模糊评判模型,从统计和特征两方面对数据进行双重判定。实验结果表明两种算法的有效结合,可以提高任一种算法单独使用时的检测性能,有效地提高了检测率,降低了误检率。