核主成分分析(kernel PCA)是PCA的非线性扩展。该研究将kernel PCA应用于新颖人脸检测。作为训练数据的人脸图像被映射到高维特征空间。在特征空间中,kernel PCA抽取数据分布的主成分,构成主子空间。在该子空间中,通过优化方法寻找包含训练数据的最小超平面,作为新颖检测的决策界面。该新方法在ORL人脸图像库的数据集中进行了实验,测试精度较线性PCA方法有所提高。