暂无评论
机器人运动学及动力学求解分析,作者经验原创性总结,不但文档分析,还最终通过程序仿真演示验证了机器人正逆运动学求解问题,有演示视频可观看。
文化粒子群优化算法,艾景波,滕弘飞,为了提高粒子群优化(PSO)算法的计算精度和计算效率,避免“早熟”,本文给出文化粒子群优化算法。该算法模型将PSO纳入文化算法框
针对粒子群优化算法在处理高维复杂函数时存在收敛速度慢、易陷入早熟收敛等缺点,提出了混合粒子群优化算法。它借鉴群体位置方差的早熟判断机制,把基因换位和变异算子引入到算法中,构造出新的个体和个体基因的适应
结合小生境思想及灾变原理,提出了一种动态调整种群结构的粒子群算法(AGPSO)。该算法在获取局部最优区域后只留下部分粒子寻找局部最优点,同时将其他粒子进行灾变处理,然后约束在剩余区域进行新最优区域搜索
基于社会系统中普遍存在“分久必合,合久必分”的现象,提出了基于分合思想的粒子群优化算法。分策略提高了演化群体的多样性,克服了粒子群优化算法局部收敛的缺陷。合策略吸取了不同群体的优良特性,提高了算法的全
为求解车辆路径问题提出一种改进的混沌粒子群优化算法。该算法在基本混沌粒子群优化算法(CPSO)基础上,引入逻辑斯特函数,对惯性权重因子w进行非线性调整,提高了算法的寻优能力,有效避免了算法陷入局部最优
针对高校教室调度问题进行了研究,综合考虑教室集中时间利用率和学生需求,采用三元组方式,用任务表示课程,用设备表示不同类型的教室。据此,教室排课问题被描述为一类以最小化Cmax与滞后时间和为调度目标,具
量子粒子群算法在求解车辆路径问题时一定程度上解决了基本粒子群算法收敛速度不够快的缺点,但是量子粒子群算法仍然存在容易陷入局部最优的缺点。利用混合量子粒子群算法对车辆路径问题进行求解,运用量子粒子群算法
优先规则是解决大规模资源受限的项目调度问题(Resource-ConstrainedProjectSchedulingProblem,RCPSP)强有力的方法,但是单一的优先规则的往往仅在某些特定的问
论文研究-改进的粒子群算法求解Van Genuchten方程参数.pdf, Van Genuchten模型是研究土壤水力学性质应用最广泛的模型.运用该模型的关键是4个参数的求解.为了精确地求解这些参
暂无评论