暂无评论
美国西储大学滚动轴承故障诊断数据集.zip
针对高线精轧机设备故障的特点,建立了精轧机在线监测系统。采集精轧机滚动轴承的振动信号,对振动信号采用时域、频域多角度分析,时域趋势图可以判断轴承的突发性故障,频域分析可以判断故障的性质及故障部位。有效
通过电动机与滚动轴承之间建立的函数关系将振动信号转变成谐波分量,进而对谐波分量分析。对这种非平稳信号首先进行经验模态分析(EMD),然后通过改进LMS算法自适应滤波器分离噪音,最后再运用希尔伯特变换得
为了精准、稳定地提取滚动轴承故障特征,提出了基 于变分模态分解和奇异值分解的特征提取方法,采用标准模糊C 均值聚类(fuzzy C means clustering,FCM)进行故障识 别
针对包络分析中带宽和中心频率依靠经验估计的缺陷,应用一种快速峭度图算法自动为包络谱分析提供最佳带宽和中心频率。快速峭度图算法借鉴了二进小波分解算法,先将原始信号经过FIR滤波器将信号进行分解,然后在各
粗糙集是一种软计算方法,它不需要任何先验知识和理论推导,仅依赖于原始数据,从数据中发现潜在规律和隐含规则,其核心任务是数据约简,得到最简决策规则。文章基于粗糙集理论的可辨识矩阵算法,对滚动轴承故障信息
针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故
结合Volterra级数和隐Markov模型,提出了一种基于Volterra核特征提取的HMM故障识别方法。在该方法中,利用子空间法从正常、滚动体故障、内圈故障和外圈故障4种不同的轴承中提取Volte
基于BP神经网络的滚动轴承故障诊断方法,于婷婷,邵诚,本文简要介绍BP神经网络的结构与原理,通过对滚动轴承正常和故障状态的振动信号的分析处理,提取了能够反映滚动轴承运行状态的特�
针对滚动轴承故障诊断中故障特征难提取与极限学习机稳定性、泛化能力差,致使故障辨识精度差的问题,提出了一种基于ITD(Intrinsic Time-scale Decomposition)能量特征与KE
暂无评论