针对当前重症患者预后相关因素的研究主要集中于线性回归分析,构建了一基于贝叶斯网络的老年重症患者预后评估系统。提出了一种基于最小描述长度与K2算法的贝叶斯方法,以获得较优的网络结构;并利用最大似然估计进行参数学习。四折交叉抽样的实验结果表明,所构建系统的预测精度比传统的BP神经网络和基于K2的贝叶斯网络学习分别提高了6.87%和27.20%.这将为医生预测高龄患者在ICU治疗中的受益程度提供临床决策支持。