暂无评论
在粒子群优化算法基础上,提出了基于聚类的多子群粒子群优化算法。该算法在每次迭代过程中首先通过聚类方法把粒子群体分成若干个子群体,然后粒子群中的粒子根据其个体极值和“子群”中的最优粒子更新自己的速度和位
粒子群算法的集中优化,matlab程序,可直接运行
一种改进的粒子群优化算法的研究,刘斌,,利用种群的平均信息和保持活性策略。试图改变粒子群优化算法的性能,从而提出一种带有种群平均信息和保持活性策略的粒子群优化算
针对粒子群算法早熟收敛及后期收敛速度慢的缺点,提出一种基于分工合作和搜索空间重构的改进粒子群算法。首先基于分工合作的思想,对不同性能的粒子赋予不同的惯性权值,从微观上提高粒子搜索效率;同时,每当种群迭
关于粒子群的很好的教程。内容非常详尽~~很有用~~~~~
提出了结合局部优化算法的改进粒子群算法(Combination Particle Swarm Optimization,CPSO),粒子群算法虽然通过群体规模来规避早熟,但缺乏局部快速搜索能力,因此将
分析了量子行为粒子群优化算法,着重研究了算法中的收缩扩张参数及其控制方法,针对不同的参数控制策略对算法性能的影响特点,提出将Q学习方法用于算法的参数控制策略,在算法搜索过程中能够自适应调整选择参数,提
针对标准粒子群算法易出现早熟的问题,提出了一种带邻近粒子信息的粒子群算法。该算法中粒子位置的更新不仅包括自身最优和种群最优,还包括粒子目前位置最近粒子最优的信息。为了有效地平衡算法的全局探索和局部开发
从研究分析粒子群算法和郭涛算法的特点出发,提出一种综合两算法优点的混合算法。新算法改变了粒子的更新方式,以子空间搜索和串行搜索相结合的多点并行搜索,扩大了算法的搜索范围,减少了粒子对初值的依赖,增强了
针对网络化控制系统中模糊控制器的量化因子和比例因子采用传统经验方法难以整定的问题,提出了一种改进量子粒子群(IQPSO)算法对模糊控制器量化因子和比例因子进行优化。该方法将ABC算法中的搜索算子作为变
暂无评论