针对网络化控制系统中模糊控制器的量化因子和比例因子采用传统经验方法难以整定的问题,提出了一种改进量子粒子群(IQPSO)算法对模糊控制器量化因子和比例因子进行优化。该方法将ABC算法中的搜索算子作为变异算子引入到QPSO算法中,使得IQPSO算法较好地克服了QPSO算法保持种群多样性差容易早熟收敛的缺陷,并以ITAE指标作为IQPSO算法的适应度函数对模糊控制器进行优化。典型工业过程仿真结果表明,IQPSO优化的模糊控制器具有比PID控制器和标准QPSO优化的模糊控制器更好的控制性能和适用性。