暂无评论
认知无线电动态信道估计:基于改进的粒子群优化的粒子滤波算法,朱佩佩,张陆勇,采用序贯蒙诺卡罗技术的粒子滤波在处理非线性问题时具有独特的优势,而且粒子群优化算法以其快收敛、高精度等特征受到广泛关注。
为了改善无线传感网络的性能,提高网络的覆盖率,在粒子进化的多粒子群算法的基础上,提出了一种无线传感网络覆盖的优化策略。该策略通过多个粒子群彼此独立地搜索解空间, 提高了算法的寻优能力,有效地避免了基本
针对粒子群优化算法(PSO)容易出现早熟收敛的问题,提出一种改进的粒子群优化算法(IMPSO)。该算法通过引入粒子群聚合度和变异的思想,能很好避免早熟,提高粒子全局搜索能力。将此改进的粒子群优化算法用
粒子群优化算法是在对鸟群捕食行为模拟的基础上提出的一种群集智能算法,是进化计算领域中一个新的分支。它的主要特点是原理简单、参数少、收敛速度较快、易于实现。因此,该算法一提出就吸引了的广泛关注,逐
论文研究-线控系统协调优化模型及其改进粒子群算法研究 .pdf,
针对目前多目标粒子群优化算法的收敛性能和非劣解的多样性不能同时得到满足等缺陷,提出一种基于多策略的多目标粒子群优化算法(Multi-ObjectiveParticleSwarmOptimization
研究粒子群算法在数据库查询优化中的应用问题。为了解决大型数据库信息检索困难、查询效率低的问题,提出了一种基于粒子群算法优化数据库查询技术方案。算法提出了一种数据库查询执行计划代价模型,主要包括了查询多
针对粒子群算法收敛速度慢和易陷入局部最优的问题,提出了基于惯性权重对数递减的粒子群算法,并引入对数调整因子,对数调整因子的不同取值保证了算法搜索成功率。选取八种典型函数分别进行给定迭代次数和给定精度的
针对量子粒子群优化(QPSO)算法在优化过程中面临早熟问题,提出了在粒子的平均位置或全局最优位置上加入高斯扰动的QPSO算法,可以有效地阻止粒子的停滞,因此较容易地使粒子避免陷入局部最优。为了评估算法
提出了一种基于动态粒子群优化的网格任务调度算法。设计了网格任务调度问题的数学模型,给出了自适应变异的动态粒子群优化算法的框架,引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容
暂无评论