粒子群优化算法是在对鸟群捕食行为模拟的基础上提出的一种群 集智能算法,是进化计算领域中一个新的分支。它的主要特点是原理简 单、参数少、收敛速度较快、易于实现。因此,该算法一提出就吸引了 的广泛关注,逐渐成为一个新的研究热点。目前,粒子群优化算法应用 于神经网络的训练、函数优化、多目标优化等领域并取得了较好的效果, 有着广阔的应用前景。 论文的主要工作有 对粒子群优化算法的理论基础和研究现状作了简要的介绍,分 析了粒子群优化算法的原理及算法流程,对算法参数的选择做了详细的 研究,并进行了相应的仿真实验。 分析了粒子群优化算法存在的问题,主要包括参数设置问 题、算法“早熟”问题和算法稳定性问题。在