MFOA SVM在采煤工作面瓦斯涌出量预测中的应用
针对新安煤矿采煤工作面瓦斯涌出量系统时变非线性特点,建立改进果蝇算法(MFOA)支持向量机(SVM)预测模型。利用FOA具有运算简单、收敛速度快、寻优精度高等优势来优化SVM核函数参数g、惩罚因子c和不敏感损失函数ε,但FOA也存在可能陷入局部最优的不稳定缺陷,则嵌入三维搜索、混沌优化、自适应变步长和最优保留策略进行改进,并利用Rosenbrock测试函数和采煤工作面瓦斯涌出量历史数据进行试验分析,结果表明:该模型预测平均相对误差为2.16%,比其他预测模型具有更高的预测精度、更快的收敛速度、更强的泛化能力,具有一定的实际应用价值。
暂无评论