论文研究 一种概率序列核在说话人识别中的应用.pdf
以说话人识别中的背景模型为基础,根据模型中的各个高斯分量,构造出说话人特征空间,将长度不一样的语句映射成为空间中大小相同的向量,且经过相关矩阵进行规整后,采用线性支持向量机进行说话人识别。借鉴几种常见的特征规整方式,结合语句映射后的向量,提出四种不同的规整方法:均值/方差规整、权重规整、WLOG规整和球形规整,并与概率序列核进行比较研究。根据语音特征向量序列中相邻的特征向量的前后转移关系,结合提出的概率序列核,构造出转移概率序列核。实验在NIST2001库上进行,结果表明概率序列核模型识别性能接近经典的UBM-MAP模型,将这两类模型得分进行融合,可非常明显地提高识别性能,进一步融合转移概率序
暂无评论