用来预测混沌时间序列的传统加权局域模型一般用空间距离来定义邻近点的权重,当重构相空间嵌入维数增大时预测效果不是很理想。考虑了关联度对预测中心动力学行为的影响,提出用关联度来定义权重的方法,建立了一个用来预测网络流量新型的加权局域线性模型。模拟试验结果表明,和传统加权模型相比,当嵌入维数较高的时候,该模型能在较大程度上提高网络流量的预测精度。