为了提高在动态环境下追踪变化的极点的可靠性和精确性的能力,避免算法收敛于一个最优解,提出了一种改进的小生境微粒群算法。使用DF1(Dynamic Function 1)生成的复杂动态环境对这种算法进行了验证,并与经典的APSO(Adaptive Particle Swarm Optimizer)算法进行了对比,实验结果表明了该算法的有效性。