OSM数据中立交桥结构的识别和分类,能够为构建多尺度模型、导航和位置服务、拥堵分析等提供重要信息。传统的立交桥识别方法依赖于人工设计的低层次特征,无法有效区分存在干扰路段的复杂立交桥结构。本文针对当前算法抗差性上存在的不足,提出了一种新的基于卷积神经网络的立交桥识别方法。