论文研究 SPARQL查询的关系代数表示与转换方法.pdf
重抽样方法是常用的解决数据非平衡问题的一种有效手段,为提高入侵检测系统的检测效率,降低数据的不平衡程度,提出了快速分层最近邻FHNN重抽样方法,采用两阶段的基于负载均衡策略的高速网络入侵检测模型,按协议类型把KDD’99的训练数据集划分并在每类子集上进行了各种实验。实验结果表明该方法不仅可以很好地删除噪声数据和冗余信息,尤其是类区域内样本,减小数据的不平衡度和样本总量,而且由于算法时间复杂度是线性阶的,在样本数量很大的情况下,运行速度非常快,适合从海量的数据中快速而有效地检测各类攻击。
暂无评论