暂无评论
在保证高跟踪准确度的基础上,降低节点的能耗,延长网络的寿命是目标跟踪的核心问题。为此,提出了一种基于预测的动态分簇目标跟踪算法Pre-DC。该算法首先建立动态的簇结构,然后利用粒子滤波算法实现簇对目标
为克服光照变化和目标遮挡对运动目标跟踪的影响,提出了一种基于改进的局部敏感直方图的多区域目标跟踪算法。改进了局部敏感直方图并设计了快速算法;将改进的局部敏感直方图作为多区域跟踪算法中的目标建模方式,提
针对压缩跟踪不能适应目标姿态变化导致跟踪失败的问题,提出了一种基于二值随机森林的目标跟踪算法。该算法对实时压缩跟踪算法的特征提取和分类这两个部分作了改进。首先,在梯度图像上进行多尺度滤波,获得目标的高
目标跟踪是计算机视觉研究领域的热点之一,并得到广泛应用。其中基于MeanShift的运动目标跟踪算法因其计算量小,实时性好,简单易行等特点而受到广泛关注,但该算法在目标突变或严重帧丢失以及目标严重遮挡
针对粒子传播过程中因欠缺观测信息而导致退化现象和异常粒子,提出一种基于试探采样的自反馈目标跟踪算法。该算法在当前帧完成采样后向前试探采样粒子,并且反馈到当前帧,此举是利用未来帧提前采样形式把观测信息融
提出了一种基于特征角点的目标跟踪、识别方法, 其运算效率较高, 且角点不易丢失。从对基于灰度的角点提取方法和基于边缘的角点提取方法的比较入手, 提出建立新特征模型的必要性。随后给出了一种既能提高运算效
针对目标跟踪中的特征提取和匹配问题进行分析,提出了一种基于局部特征匹配的目标跟踪方法,该算法基于Shape Context进行特征提取。首先,对现有特征提取算法进行简单介绍,并详细介绍Shape Co
Face Detection Based on Adaboost Algorithm
以多目标跟踪为核心的算法,具有较好的鲁棒性
暂无评论