暂无评论
多目标优化问题中,决策者往往只对目标空间的某一区域感兴趣,因此需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法却找出全部的Pareto前沿,决策效率不高。针对该问题,给出了基于决策者
为了使多目标粒子群算法中种群粒子能够快速地收敛于帕累托最优边界,针对标准多目标粒子群算法中缺乏粒子评价标准以及种群个体历史最优值位置和全局最优值位置选择问题,提出了一种基于环境选择和配对选择策略的多目
为了克服粒子群算法求解多目标问题极易收敛到伪Pareto前沿(等价于单目标优化问题中的局部最优解)和收敛速度较慢的缺陷,提出一种合并帕累托占优概念到动态邻居和变异因子的粒子群算法(particlesw
为解决多目标粒子群优化算法存在解的多样性差、分布不均等问题,提出一种混合择优机制:在迭代过程中每个粒子依概率,根据解集信息熵或Sigma值确定其全局极值;并直接对解集进行基于信息熵的克隆选择,根据支配
针对多目标粒子群算法多样性较差,种群选择压力随着变量维度增加的问题,提出了基于动态邻居维度学习的多目标粒子群算法(DNDL-MOPSO)。该算法首先构建最优维度个体,然后在“个体认知”和“社会认知”的
为了进一步提高工作流调度的效率,对异构环境下的工作流调度算法进行研究,提出了一种基于关键路径前瞻算法( critical path lookahead algorithm,CPLA) 的工作流调度算法
为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(dMOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策
为提高多目标优化算法的收敛性和多样性, 提出一种基于多层次信息交互的多目标粒子群优化算法. 在该算法中, 整个优化过程可分为标准粒子群优化层、粒子进化与学习层和档案信息交换层3 个层次. 粒子进化与学
地磁感应电流(GIC)流经变压器绕组会产生直流偏磁现象,造成变压器无功损耗增加,破坏电网无功平衡,影响电网安全稳定运行。为了有效地抑制GIC对电网的不良影响,以无功补偿设备成本和电压偏移量最小为目标,
第 21卷第 22期 系 统 仿 真 学 报 ? V ol. 21 No. 22 2009年 11月 Journal of System Simulation Nov, 2009 ? 7061 ? 基
暂无评论