暂无评论
针对电力变压器故障的深度诊断问题,提出一种深度置信网络与D-S证据理论相结合的方法。采用深度置信网络对电力变压器故障的多维数据进行特征提取及分类,并结合D-S证据理论解决故障诊断中的不确定性问题,构造
NULL 博文链接:https://fangrn.iteye.com/blog/526034
详细介绍了AIX一般性能分析过程,性能分析工具,系统故障诊断,故障诊断工具
传输层故障诊断与分析 ————在校生的作业
鉴于将深度学习应用于变压器故障诊断具有良好的故障诊断效果,提出了一种基于栈式稀疏自编码器的矿用变压器故障诊断方法。通过在自编码器隐含层引入稀疏项限制构成稀疏自编码器,再将多个稀疏自编码器进行堆叠形成栈
针对变压器绕组轻微匝间短路故障难以检测的问题,提出利用重复脉冲法的特征曲线进行匝间短路故障诊断的方法。分析了脉冲信号在变压器绕组内的传播过程,建立了反映该传播过程的变压器绕组分布参数电路模型,推导了发
rbf神经网络在变压器故障诊断中的应用,可以用于其他故障诊断
车载牵引变压器故障诊断的方法是将人工智能算法和油中气体分析法(DGA)相结合,但溶解气体由于再生、取样、色谱分析的原因,其数据存在许多的不确定性。提出将电气量与一种新的小波神经网络模型相结合的新方法来
BP算法基于梯度下降原理是一种局部寻优算法,在变压器故障诊断应用中网络学习过程收敛速度慢,且易陷入局部极小值。而遗传算法(GA)具有并行计算的特点,可以有效防止搜索过程收敛于局部最优解。将二者结合起来
实现了证据理论在变压器故障诊断中的应用,先用三比值方法和模糊数学的方法进行故障诊断在应用证据理论的融合方式进行数据融合
暂无评论