暂无评论
无透镜同轴全息图中包含零级像和孪生像噪声,采用基于菲涅耳衍射模型的方法进行抑制时需要多幅无透镜图像。针对此问题,提出一种基于生成对抗网络(GAN)的无透镜成像方法。首先计算部分相干光照明下无透镜图像的
压缩包内包含16篇生成对望网络GAN方面的英文论文(全是英文,不包含中文论文)。包含GAN, conditional GAN, DCGAN, WAGAN, SAGAN, 训练GAN的技巧等等,看完会对
针对多模态图像融合中多尺度几何工具和融合规则设计困难的问题,提出一种基于生成对抗网络(GANs)的图像融合方法,实现了多模态图像端到端的自适应融合。将多模态源图像同步输入基于残差的卷积神经网络(生成网
生成对抗网络项目实践 随书源码3D-GAN, cGAN, DCGAN, SRGAN, StackGAN,CycleGAN等等。
SpeechEnhancementGenerativeAdversarialNetworkinPyTorch
keras-adversarial, Keras生成对抗性网络 Keras对抗性模型将多个模型合并为单个模型。 GANs轻松 !AdversarialModel 模拟多玩家游戏。对 model.fit
DCGAN DCGAN是深度卷积生成对抗网络。 DCGAN由彼此相对的两个神经网络组成。 生成器神经网络学习创建看起来真实的图像,而鉴别器学习识别伪造的图像。 随着时间的流逝,图像开始越来越像训练输入
GenerativeAdversarialImitationLearningJonathanHoStefanoErmon
基于双层生成对抗网络的素描人脸合成方法
针对相机成像时相机抖动、物体运动等导致图像产生运动模糊这一十分具有挑战性的问题,提出基于生成对抗网络的深度卷积神经网络来复原模糊图像的解决方案。该方案省略了模糊核估计的过程,采用端对端的方式直接获取复
暂无评论