暂无评论
针对粒子群算法整体上容易陷入局部最优的缺陷,将鱼群算法中的视距、拥挤度引入标准粒子群算法,提出一种改进的粒子群算法,有效提高了粒子群算法的全局收敛性。通过基准函数Sphere、Griewank、Ack
在基于粒子群算法的多模优化问题中,针对现存小生境方法需要特定参数的缺陷,提出了一种不需要参数的小生境算法。该算法通过粒子适应度在种群适应度中所占比例以及粒子之间的欧式距离两方面因素确定粒子的局部最优解
针对基本人工鱼群算法(AFSA)收敛速度较慢、精度较低和粒子群易陷于局部的缺点,提出了混沌协同人工鱼粒子群混合算法(CCAFSAPSO)。该算法采取AFSA、PSO的全局并行搜索与模拟退火算法(SA)
信号传播过程中因障碍物阻挡产生的阴影衰落对无线传感器网络的覆盖产生较大的影响。针对无线传感器网络的完全覆盖问题,基于自由空间环境下的规则部署方式,推导出在衰落阴影环境下,完全覆盖网络监测区域所需的最少
针对模糊C-均值(FCM)聚类算法对初始聚类中心选择敏感,易陷入局部最优的问题,提出一种量子粒子群优化改进的模糊C均值聚类算法。该算法引入的基于新距离标准的量子粒子群(AQPSO)算法不仅可以降低初始
针对NP-hard性质的作业车间调度问题,设计了一种改进的离散粒子群优化算法。引入遗传算法交叉算子和变异算子来实现粒子的更新,并将变异思想和模拟退火算法思想融入该算法中对全局最优粒子的邻域进行局部搜索
为提高多目标粒子群优化(MOPSO)算法处理多目标优化问题的性能,降低计算复杂度,改善算法的收敛性,提出了一种改进的多目标粒子群优化算法。通过运用比例分布及跳数改进机制策略的方法,使该算法不仅继承了M
针对混合核SVM的多参数优化问题,提出利用改进混沌粒子群(ICPSO)对SVM基本参数(惩罚因子、核参数等)、混合核可调参数进行寻优,以获取最佳参数组合。实验结果表明,该方法能够快速有效地提取最优参数
对基本粒子群优化算法的速度方程进行了改进,减少了控制参数,引入随机调节因子,使得粒子的自我认知能力和社会认知能力在一定范围内随机产生,同时对个体最优粒子进行自适应随机变异,由此构造出一种改进的粒子群优
在基于DEM的地形表面重构中,传统的插值方法(B样条插值、双线形插值)获取的地形表面过于平滑,不能反映自然地形具有无限细节的事实。引入3维迭代函数系统(3D-IFS)插值方法来重构经随机简化的原始地形
暂无评论