论文《DeepFM: A Factorization-Machine based Neural Network for CTR Prediction (2017)》对于一个基于CTR预估的推荐系统,最重要的是学习到用户点击行为背后隐含的特征组合。在不同的推荐场景中,低阶组合特征或者高阶组合特征可能都会对最终的CTR产生影响。但是现存的方法总是忽视了高阶或低阶组合特征的联系,或者要求专门的特征工程,因此作者建立了DeepFM模型,将FM与DNN结合起来。