购房者描述他们的梦想房屋,预测最终价格。问题转换为回归问题,评价标准时RMSE,从MSSubClass,MSZoning,LotFrontage等特征提取新的特征。考虑到评价指标是RMSE,本质是一个回归问题,模型融合时候可以使用多个回归模型进行stacker。采用数据清洗、特征工程、建模和高级回归技术,实现了对数据进行分析,分析数据之间的联系,数据的分布,数据的类型等,最终实现了堆叠回归预测房价,其主要功能包括预测销售价格并练习特征工程,RF和梯度提升,特点是堆叠回归,预测值与真实值误差小。 源代码:House price.py 训练集:train.csv 测试集:test.csv 提交样例