提出基于脑电信号(EEG)的睡眠分期研究。利用离散小波变换(DWT)的db8小波分解得到的细节分量作为信号新的表达,把各个细节分量能量作为特征,建立带高斯径向基核函数(RBF)的非线性支持向量机(SVM)模型。研究发现,其对睡眠分期研究的方案是可行的,满足模型对泛化能力的要求。