PID控制器是过程控制中应用最为广泛的控制器,而传统PID控制器参数整定难以达到最优状态,同时,存在控制结果超调量过大、调节时间偏长等缺点,因此,将变异粒子群优化算法(Mutation Particle Swarm Optimization,MPSO)运用于BP-PID的参数整定过程中,设计了一种高效、稳定的自适应控制器。考虑MPSO的变异机制,以种群适应度方差与种群最优适应度值为标准,进行种群变异操作,可以克服早熟,提高收敛精度和PSO的全局搜索能力,使MPSO优化的BP神经网络整定的PID控制器能以更快的速度、更高的精度完成过程控制操作。在实验中,通过比较BP-PID、PSO-BP-PID