为解决传统隐马尔可夫股价行为预测模型对输入特征序列和隐含状态数目敏感,导致预测结果存在局部最优、误差较大的问题,设计了新的股票因子特征选择方法,包括对因子特征的筛选和特征数据预处理。结合贝叶斯信息规则确定模型最佳隐含状态数目,提出了一种优化股价行为预测性能的PRHMM模型。通过对比支持向量机、ARIMA模型,实验结果证明,所提出的预测算法相对传统预测模型,在股价行为预测中有更好的预测表现。