传统的神经网络表情识别系统由特征提取和神经网络分类器组成,利用人的经验来获取模式特征,很容易丢失表征表情特征的细节信息。提出一种基于卷积神经网络的识别方法,避免了对图像进行复杂的特征提取,直接把图像数据作为输入。通过在Cohn-Kanade表情库上的实验结果表明,该方法能够取得很好的表情分类效果。