1 引言 用Hopfield神经网络求解旅行商问题(TSP),给组合优化完备性问题的求解提供新的方法。但该算法会经常生成无效解,因此需进一步改进。有学者通过TSP网络的动态分析修正TSP的能量函数,从而获得有效解,但其能量函数的表达式过于复杂。有人简化该能量函数,进一步提出改进算法。这里拟对典型的两种改进算法进行仿真分析。 2 HopfieId网络的能量函数 为将TSP问题映射成神经网络的动态过程,Hopfield采取置换矩阵的表示方法,用N×N个神经元组成Hopfield人工神经网络表示商人访问N个城市。 网络达到稳定状态时各神经元的状态对应置换矩阵各元素的值(“1”