前言 由于机器学习的基本思想就是找到一个函数去拟合样本数据分布,因此就涉及到了梯度去求最小值,在超平面我们又很难直接得到全局最优值,更没有通用性,因此我们就想办法让梯度沿着负方向下降,那么我们就能得到一个局部或全局的最优值了,因此导数就在机器学习中显得非常重要了 基本使用 tensor.backward()可以及自动将梯度累加积到tensor.grad上 x = torch.ones(3,3) print(x.requires_grad) x.requires_grad_(True) print(x.requires_grad) y = x**2/(x-2) out = y.mean()