综述 RNN( Recurrent Neural Network 循环(递归)神经网络) 跟人的大脑记忆差不多。我们的任何决定,想法都是根据我们之前已经学到的东西产生的。RNN通过反向传播和记忆机制,能够处理任意长度的序列,在架构上比前馈神经网络更符合生物神经网络的结构,它的产生也正是为了解决这类问题而应用而生的。 RNN及改进的LSTM等深度学习模型都是基于神经网络而发展的起来的认知计算模型。从原理来看,它们都是源于认知语言学中的“顺序像似性”原理:文字符号与其上下文构成一个“像”,这个“像”可以被认为是符号与符号的组合——词汇,也可以被认为是词汇与词汇的句法关系——依存关系。算法