针对复杂、不确定、非均匀采样数据的非线性系统,提出一种基于矩阵奇异值分解(SVD)的模型结构辨识和参数估计的建模方法.首先,利用矩阵奇异值(SVD)分解算法分析各局部模型与奇异值、积累贡献率的关系,确定模糊模型的规则数,从而实现模型的结构优化;然后,为了克服递推最小二乘出现的误差积累、传递现象,采用奇异值分解的递推最小二乘估计模型的结论参数;最后,通过仿真实例验证所提出算法的有效性.