基于改进RBF模糊神经网络的PID参数自整定
针对常规PID控制器和模糊PID控制器存在控制精度差、不能自适应、模糊规则难以确定等问题,本文提出一种基于RBF模糊神经网络的PID自整定控制算法,RBF模糊神经网络参数先采用遗传算法粗调,达到预定精度后,继续使用BP算法提高精度。通过在MATLAB中进行神经网络训练和PID仿真实验,表明了改进RBF模糊神经网络PID控制器具有收敛速度快、能够自适应、控制精度高等优点,具有一定的可行性。
针对常规PID控制器和模糊PID控制器存在控制精度差、不能自适应、模糊规则难以确定等问题,本文提出一种基于RBF模糊神经网络的PID自整定控制算法,RBF模糊神经网络参数先采用遗传算法粗调,达到预定精度后,继续使用BP算法提高精度。通过在MATLAB中进行神经网络训练和PID仿真实验,表明了改进RBF模糊神经网络PID控制器具有收敛速度快、能够自适应、控制精度高等优点,具有一定的可行性。