针对分层Takagi-Sugeno-Kang(TSK)模糊分类器可解释性差,以及当增加或删除一个TSK模糊子分类器时Boosting模糊分类器需要重新训练所有TSK模糊子分类器等问题,提出一种并行集成具有高可解释的TSK模糊分类器EP-Q-TSK.该集成模糊分类器每个TSK模糊子分类器可以使用最小学习机(LLM)被并行地快速构建.作为一种新的集成学习方式,该分类器利用每个TSK模糊子分类器的增量输出来扩展原始验证数据空间,然后采用经典的模糊聚类算法FCM获取一系列代表性中心点,最后利用KNN对测试数据进行分类.在标准UCI数据集上,分别从分类性能和可解释性两方面验证了EP-Q-TSK的有效性.